

Subscriber access provided by ISTANBUL TEKNIK UNIV

Neocleordane Diterpenoids and Their Artifacts from Teucrium olivarianum

Mohammed A. Al-Yahya, Ilias Muhammad, Humayun H. Mirza, Farouk S. El-Feraly, and Andrew T. McPhail

J. Nat. Prod., 1993, 56 (6), 830-842• DOI: 10.1021/np50096a005 • Publication Date (Web): 01 July 2004

Downloaded from http://pubs.acs.org on April 4, 2009

More About This Article

The permalink http://dx.doi.org/10.1021/np50096a005 provides access to:

- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

NEOCLEORDANE DITERPENOIDS AND THEIR ARTIFACTS FROM TEUCRIUM OLIVARIANUM

MOHAMMED A. AL-YAHYA, ILIAS MUHAMMAD, HUMAYUN H. MIRZA, FAROUK S. EL-FERALY,*

Medicinal, Aromatic and Poisonous Plant Research Center (MAPPRC), College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia

and ANDREW T. MCPHAIL

Department of Chemistry, Paul M. Gross Chemical Laboratory, Duke University, Durham, North Carolina 27708-0346

ABSTRACT.—The aerial parts of *Teucrium oliverianum* yielded five new neocleordane diterpenoids (teucrolins A [4], B [5], C [6], D [7], and E [8]), three neocleordane diterpene artifacts (12-0-methylteucrolivin A [9], 12-0-methylteucrolin A [10], and 12-0-ethylteucrolin A [11]), and the three known diterpenoids teucrolivins A [1], B [2], and C [3]. In addition, four other known compounds were isolated: the sterol 24(S)-stigmasta-5,22,25-trien-3 β -ol, the iridoid 8-0-acetylharpagide, and the flavones eupatorin and cirsiliol. The structural assignments of all new diterpenoids and their artifacts were based on 1D and 2D nmr spectral data, chemical derivatization, and X-ray crystallographic analysis of 10; the latter established the relative stereochemistry and the presence of the rare axial substitution at C-3 in 10 and related compounds.

Teucrium oliverianum (Ging. ex Benth.) R.Br. (Labiatae), a perennial herb, is one of five species of *Teucrium* distributed throughout Saudi Arabia (1-3). This plant is used in traditional Saudi medicine for the treatment of diabetes and is well known for its hypoglycemic activity (4). Earlier phytochemical work on the aerial parts of this plant yielded the three C-10 oxygenated neocleordane diterpenes teucrolivins A [1], B [2], and C [3] (5) and teucrolivins D–F (6). The structure and relative stereochemistry of 1 were unambiguously determined by X-ray crystallography. However, other species of *Teucrium* are known to exhibit a wide array of neocleordane and 19-norneocleordane diterpenoids (7,8), flavanoids (9,10), and iridoid glycosides (11), exhibiting various types of biological

June 1993]

activities (12,13). We herein report on the isolation and characterization of five new diterpenoids from the aerial parts of *T. oliverianum*, namely, the 3α -acetylneocleordane diterpenes teucrolins A [4], B [5], and C [6] and the 3α -acetyltetranorneocleordane teucrolin D [7], as well as teucrolin E [8]. In addition, the same plant material yielded the neocleordane diterpene artifacts 12-0-methylteucrolivin A [9], 12-0-methylteucrolin A [10], and 12-0-ethylteucrolin A [11], the known neocleordanes teucrolivins A [1], B [2], and C [3] (5), the sterol 24(S)-stigmasta-5,22,25-trien-3\beta-ol (14), the iridoid 8-0-acetylharpagide (11,15), and the flavonoids eupatorin and cirsiliol (16,17).

RESULTS AND DISCUSSION

The CHCl₃ solubles of the 95% MeOH extract of T. oliverianum were flash chromatographed (18) on Si gel to give a number of fractions from which the major products 1-3 were obtained in 0.05%, 0.018%, and 0.014% yields, respectively. Compounds 1-3 were identified as teucrolivins A-C, respectively, by comparison of their physical and spectroscopic data with those previously reported (5). Further purification of fraction A (Table 1) by chromatography gave teucrolin A [4], $C_{26}H_{34}O_{10}$, as colorless plates. On methylation, 4 afforded the corresponding 12-0-methylteucrolin A [10] (δ 3.01, 3H, s; δ_c 51.21, q), confirming the presence of a hydroxyl group. Comparison of the ¹H- and ¹³C-nmr spectral data of 4 and 1 [Tables 2 and 3, and Bruno et al. (5)] suggested that 4 was likely to be the 3-acetyl derivative of 1. The ¹H-nmr spectrum of 4 (Table 2) contained a signal at δ 4.62 (t, J=4.2 Hz, H_g-3) suggesting the presence of an axially disposed 3α -OAc group. The related 3β -acetoxy derivatives of **10** and 4 were obtained from 12-0-methylteucrolivin A [9] (see Experimental) by NaBH₄ reduction, which yielded compound 12 as the major product. Acetylation of 12 afforded 3-epi-12-0-methylteucrolin A [13] and the by-product 3-epi-teucrolin A [14]. The 'Hnmr spectra of 13 and 14 (Table 2) clearly showed the strong deshielding of their H-3 α protons due to equatorial (β) orientation of their 3-OAc groups in contrast to axial disposition in the natural 3α -OAc epimer 4. Furthermore, the ¹³C-nmr spectrum of 14 (Table 3) revealed strong shielding of C-3 (δ_c 67.47) and C-18 (δ_c 44.53) compared to the corresponding centers [$\delta_{c.3}$ 76.45, $\delta_{c.18}$ 50.64] in 4, due to the 3 β -OAc group. The structure of teucrolin A [4] was tentatively proposed on the basis of its 13 C-nmr spectral

7 R=α-OAc 19 R=O

Fraction.
CHCI
f the
c) o
(CPtl
Tlc
Preparative
gal I
Centrifug
and (
(cc)
Chromatography
un
Colur
TABLE 1.

			Solven				Wei	ght	4			
	Petroleum ether	ErOAc	НОэМ	Et ₂ O	Me ₂ CO	CHQ	(8)	(%)	K,	ωρ, (α)ο	Lıt. mp, {αJD	Identity
ŭ	9.0	0.1					0.24	0.008	0.85			=
							1.711	0.057	0.82	$(-50.4^{\circ}, r=0.01)$ 205-206°,		6
							0.511	0.017	0.80	$+27.5^{\circ}$ ($c=0.13$) $177-179^{\circ}$,		10
	8.5	1.5					0.045	0.0014	0.72	-31.3° (r=0.01) $77-79^{\circ}$,		٢
							1.59	0.05	0.65	-53° ($c=0.084$) 199-200°, $+46^{\circ}$ ($c=0.1$,	185–187°, + 54.1° (CHCl,)	1
										+25° (c=0.1)		
	7.0	3.0					0.533	0.018	0.55		104-106°	mixture A (2.5 g) 2
	6.5	3.5								(CI:N-2) /.67±		mixture B
	1	-					0.428	0.014	0.35	r + 19.1° (c=0.11, ¹ CHCl,)	95–105°, +15.9° (CHCI,)	(3.0g) 3
Cptkc Mixture A	4			6			0.310	10.0	0.60	119-120°, 		4
		-					0.055	0.002	0.50	-4.5.2 ((-0.1)) $152-153^{\circ}$, -73.6° ((-0.11)	I	9
Mixture B			_		0.25	100	0.105	0.004	0.60	-72.8 (c-0.11) 173-174°, -48 5° $c=0.07$	1	v
							0.040	0.0013	0.35*	$78-79^{\circ},$ -35.4° (ϵ =0.05)		æ
¹ Using chromatorron (Si gel P ₂₄ , ^b Si gel G 254, solvent petroleum 'Obrical rotation data recorded for	2 mm disk). ether-EtOAc (1:9) r diternenes in C.F	L Are likely r	be more reli	able than thos	e recorded in	halooenared s	- - - - - - - - - - - - - - - - - - -					
^d Data in this column are from Bru Amorphous solid.	uno et al. (5).					9						
Solvent Et ₂ O. [#] Solvent CHCl ₄ /Me ₂ CO.												

Journal of Natural Products

È.
4
-
4
ne
be
er
E
Ľ.
£
ŝ
S
Ę.
5
Jar
Ē
-=
Ηz
Ë.
nts
tai
ns
S
-00
<u>.</u>
dr
,õ
¥
âD
Ä
E
Ъ
ŝ
Ξ
cs
ηn
۲a
£
Ę.
-
<u>.</u>
Ε
he
Ċ.
ľ
ā
Ĥ
-
~i
E
BL
ΤV
-

					Compound				
Proton	4	7	6	10	6	11	12	13	14
				(CDCL)	(C ₆ D ₆)			(C ₆ D ₆₎	(C_6D_6)
1-1	2.0-2.10 m	1.95–2.05 m	2.0-2.20 m 2.45 - 2.50 m	2.0–2.08 ш	4+	÷	÷	+	+
-2	2.20–2.30 m	п.80-1.90 т	2.62–2.64 m	2.2–2.24 m 1 87–1 80 m	+	1.75–1.85 m	1.95–2.2 т	+	+
-3	4.62 t	4.63 t		4.62 brt	4.81 dd	4.63 t (3.0) ^d	4.19 dd (4 8 12 0)	5.65 dd (5.4.11.4)	5.67 dd (5.6.12.5)
	(4.2) 5.33 dd (6.4,10.6)	5.21 dd (0.0,9.4)	5.30 dd (5.8,10.8)	5.30 dd (4.5,11.5)	5.57 ddd (1.4,6.2,	5.35 dd (6.0,10.0)	5.35 brdd (4.0,11.4)	5.55 dd (6.4,10.4)	5.52 ddd (1.3,5.1,
-1	I.40–1.48 m	l.70–1.82 m	1.38–1.41 m	1.65–1.70 т	+ 11.0)	1.35–1.45 m	1.34–1.48 m	+	+ 10.5)
				1.37 dt (3.8,9.0)					
-8 1-1	1.75–1.85 m [°] 2.23.4	1.60-1.75 m 2-22-d	1.85–1.95 m 2 31 d	1.82–1.85 m 2.17 d	+ 2.05 d	1.75–1.85 m 2.27 d	1.79–1.84 m 2.16 d	+ 2.10 d	+ 1.96 d
	(12.6)	(9.2) 2.44 J	(13.2)	(13.5) 2 31 d	(13.4) 2.15.d	(12.0) 2 33 d	(13.0) 2.32.d	(13.0) 2.03 d	(13.2) 2.09 d
	(13.0)	(0.01)	(13.8)	(13.5)	(13.8)	(12.0)	(13.0)	(13.2)	(13.6)
I-14	6.39 dd (1.2.2.0)		6.29 dd (1.4,2.6)	6.26 dd (1.0,1.9)	6.01 t (1.0)	0.28 dd (1.0,2.0)	0.2/ Drs	0.11 d (2.0)	0.10 dd (1.0,2.0)
I-15	7.39 d		7.44 t	7.41 t	6.99 t	7.40 t	7.41 d	6.98 d	6.96 t
1-16	(1.7) 7.48 d	1	(2.0) 7.43 t	07.15 bb 24.7	7.49 t	7.44 t	7.45 brd	7.16 brs	7.40 dd
-17	(1.3) 0.75 d	0.95 d	(1.4) 0.78 d	(1.0,1.6) 0.72 d	(1.0) 0.36 d	(0.1) 0.73 d	(1.2) 0.72 d	0.31 d	0.30 d
1.0	(9:9) 2 \$0.4	(5.6) 2 54 d	(7.2) 2.67 d	(6.7) 2.51 d	(7.0) 2.22 d ·	(6.2) 2.52 d	(6.0) 2.98 d	(6.2) 2.84 d	(7.2) 2.89 d
	(4.4)	(4.2)	(2.4)	(1.1)	(4.2)	(4.2) 2.26 J	(4.0) 2.0.4	(4.2) 2.28.d	(4.8) 3.27.4
1 _n -18	5.19 d (4.4)	5.18 d (3.8)	(0.6) (0.6)	0.2.c	B / C·C	(4.2)	(6.6)	(4.0)	(4.8)
Ι _A -19	4.60 brd (11.2) ^d	4.57 dd (2.4,12.0) ^d	4.37 d (11.4)	4.58 d (12.9) ^d	4./) dd (1.4,12.4)	4.60 d (12.0) ^d	4.2/ d (11.8)	4.18 dd (1.8,12.0)	4.19 dd (1.2,13.0)
H _n -19	5.09 d	5.13 d	4.81 d (11.8)	5.10 d (12.0)	5.16 d (12.2)	5.09 d (12.2)	5.07 d (12.0)	4.98 d (12.4)	4.95 d (13.0)
1-20	0.96 s	1.05 s	1.02 s	0.92 s	0.56 s	0.94 s	0.87 s	0.39 s	0.37 s
OMe	2.10, 2.06,	2.12, 2.08,	3.03 s 2.06, 2.04,	3.01 s 2.10, 2.06,	2.85 s 1.86, 1.84,	2.11, 2.07,	5.04 s 2.11, 1.99	2.15, 1.85,	— 2.13, 1.85,
	1.96 (3×s)	1.97 (3×s)	2.02 (3×s)	1.96 (3×s)	1.56 (3×s)	1.97 (3×s)	(2×s)	1.70 (3×s)	1.72 (3×s)
OEt	1					(7.6, 12.0)			
						1.04 t (7.8)			

June 1993]

	Compound								
Carbon	1	4	7	9	10	11	12	14	
C-1	28.21	24.40	24.70	28.42	24.65	24.65	27.65 ^b	27.43 ^b	
C-2	36.17	25.68	25.27	35.97	25.49	25.44	27.60 ^b	26.41 ^b	
C-3	205.32	76.45	75.39	205.08	76.38	76.58	65.83	67.47	
C-4	63.0	60.93	60.35	61.90	60.75	60.78	64.40	62.41	
C-5	48.76 ^b	47.20 ^b	46.69	48.72 ^b	47.21 ^b	47.30 ^b	47.93°	48.40°	
C-6	68.75	70.13	69.30	68.81	69.70	69.97	69.34	68.88	
C-7	32.89	32.74	32.19	32.93	32.67	32.74	32.71	33.03	
C-8	33.76	33.70	35.28	33.73	33.67	33.72	33.52	33.58	
C-9	49.18 ^b	48.48 ^b	44.98	48.91 ^b	47.90 ^⁵	47.82 ^b	48.02 ^c	48.41°	
C-10	90.14	91.73	93.22	90.47	92.10	90.08	92.25	91.62	
C-11	50.58	49.40	42.80	51.50	51.40	49.19	51.19	50.52	
C-12	100.81	101.08	173.95	104.47	104.75	104.29	104.28	101.05	
C-13	131.91	132.27	_	127.88	128.0	128.77	128.22	132.92	
C-14	108.16	108.37	_	108.68	108.68	108.82	108.79	108.65	
C-15	143.97	143.79	_	144.08	143.83	143.77	143.83	143.72	
C-16	138.49	138.56		140.15	140.20	139.93	140.28	138.88	
C-17	15.94	16.18	16.36	15.97	16.08	16.14	16.15	15.76	
C-18	52.51	50.64	49.48	52.35	49.15	51.73	44.23	44.53	
C-19	61.03	62.32	62.16	61.90	62.18	62.27	61.07	60.91	
C-20	15.04	13.96	13.30	15.07	14.05	14.13	13.77	13.19	
ОМе	_	_	_	51.31	51.21	_ `	51.19		
OAc's	170.21	170.84	170.54	170.19	170.74	,170.85	170.53	170.34	
	169.97	170.01	169.75	169.89	170.02	170.08	169.86	169.48	
	_	170.01	169.66	_	169.90	170.02	_	169.14	
	21.26	21.33	21.29	21.30	21.62	21.32	21.22	21.11	
	20.56	21.27	21.20	20.54	21.24	21.32	21.16	20.99	
		21.19	21.15		21.18	21.26		20.63	
OEt						58.98			
						14.90			

TABLE 3. ¹³C-nmr Spectral Data for Diterpenoids 1, 4, 7, 9–12, and 14.^{*}

'Spectra recorded for 1 and 10 at 75 MHz, and for 4, 7, 9, 11, 12, and 14 (in C₆D₆) at 50 MHz. Multiplicities of the carbon signals of all compounds were determined by APT and DEPT experiments, also aided (for 1 and 10) by 2D nmr COSY and HETCOR experiments. ^{bc} Signals in the same column with the same superscript are interchangeable.

data and those of its derivatives **1** (5), **9–12**, and **14** (Table 3); singlets at δ 91.73 and δ 101.08 for C-10 and C-12, respectively, in the C-12(10 β)-hemiacetal moiety of **4** with C-12 as the spiro center [versus δ_{C-10} 90.09, δ_{C-12} 100.77 of **1** (5)].

X-ray crystallographic analysis unambiguously established the complete structure and relative stereochemistry of **10** (the methyl ether of **4**). Carbon and oxygen atom fractional coordinates¹ are listed in Table 4. Bond lengths, in general, lie close to expected values (19). A view of the solid-state conformation is presented in Figure 1. [Endocyclic torsion angles ω_{ij} (σ 0.5–0.9°) about the bonds between atoms *i* and *j* follow: $\omega_{1,2}$ = 52.0, $\omega_{2,3}$ 48.0, $\omega_{3,4}$ = 54.2, $\omega_{4,5}$ 57.4, $\omega_{5,10}$ = 58.8, $\omega_{10,1}$ 58.9° in ring A; $\omega_{5,6}$ = 55.2, $\omega_{6,7}$ 61.8, $\omega_{7,8}$ = 54.3, $\omega_{8,9}$ 43.3, $\omega_{9,10}$ = 40.8, $\omega_{10,5}$ 44.9° in ring B; $\omega_{9,11}$ 34.1, $\omega_{11,12}$ = 12.4, $\omega_{12,25}$ = 17.1, $\omega_{25,10}$ 39.0, $\omega_{10,9}$ = 43.9° in ring C; $\omega_{13,14}$ = 2.0, $\omega_{14,15}$ 3.4, $\omega_{15,27}$ = 3.4, $\omega_{27,16}$ 2.1, $\omega_{16,13}$ = 0.1° in ring D]. Rings A and B are in somewhat flattened chair conformations, ring C approximates to a half-chair form with its C₂ symmetry axis passing through C-12 and the mid-point of the C-9–C-10 bond, and ring D is essentially planar.

Teucrolin B [5] was isolated as colorless needles and analyzed for $C_{24}H_{34}O_8$. Its ¹Hand ¹³C-nmr spectral data (Tables 5 and 6) were generally similar to those of the previously isolated furano neocleordane diterpene teugraciline C [15] (20), except for the presence of signals for acetoxy and hydroxyl groups at C-3 and C-12, respectively. The ¹H-nmr spectrum of 5 contained a signal at δ 4.56 (t, J=3.4 Hz; δ_c 76.46; δ (C₆

¹Atomic coordinates for compound **10** have been deposited at the Cambridge Crystallographic Data Centre, and can be obtained on request from Dr. Olga Kennard, University Chemical Laboratory, 12 Union Road, Cambridge CB2 1EW, UK.

FIGURE 1. Atom numbering scheme and solid-state conformation of 12-0-methylteucrolin A [10]; hydrogen atoms have been omitted for clarity.

 D_6) 4.70, t, J=2.2 Hz) due to an axially disposed 3 α -OAc group, as observed for 4. On acetylation, teucrolin B [5] afforded the corresponding triacetate 16 and tetraacetate 17, with the ¹H-nmr spectrum of the latter showing the anticipated deshielding of both H-6 and H-12 to δ 4.75 (ddd, J=1.4, 9.8 Hz) and 5.89 (dd, J=3.3, 7.9 Hz), respectively, versus δ_{H-6} 3.66, δ_{H-12} 4.79 for 5, thus confirming the presence of hydroxyl groups at C-6 and C-12 positions in 5. The ¹³C-nmr spectrum of the tetraacetate 17 revealed deshielding of C-12 to δ_c 64.65 and shielding of C-13 to δ_c 126.09 (versus δ_{c-12} 63.12 and

Atom	x	У	z	$Beq(Å^2)$
C-1	0.0960 (8)	0.6291 (7)	-0.0160 (1)	6.2 (2)
C-2	-0.0506 (8)	0.5168 (9)	-0.0326(1)	7.2 (2)
C-3	0.0165 (8)	0.4582 (8)	-0.0517 (1)	6.4 (2)
C-4	0.1272 (7)	0.3830 (7)	-0.0442 (1)	5.3 (1)
C-5	0.2808 (6)	0.5004 (6)	-0.0290 (1)	4.9 (1)
C-6	0.3850 (7)	0.4169 (7)	-0.0206 (1)	5.8(1)
C-7	0.5156 (8)	0.5224 (9)	-0.0039 (2)	7.0 (2)
C-8	0.4342 (9)	0.5496 (8)	0.0168 (1)	6.9 (2)
C-9	0.3163 (8)	0.6266 (6)	0.0116 (1)	5.8 (1)
C-10	0.1957 (7)	0.5406 (6)	-0.0088 (1)	4.9 (1)
C-11	0.1748 (9)	0.5668 (7)	0.0299 (1)	6.5 (2)
C-12	0.0355 (8)	0.3888 (7)	0.0222 (1)	5.6(1)
C-13	0.0163 (8)	0.2333 (7)	0.0347 (1)	5.7 (1)
C-14	-0.0377 (10)	0.1920 (8)	0.0571 (1)	7.0 (2)
C-15	-0.0478 (9)	0.0409 (8)	0.0614 (1)	7.6 (2)
C-16	0.0405 (9)	0.1057 (7)	0.0273 (1)	6.7 (2)
C-17	0.5639 (11)	0.6460 (14)	0.0349 (2)	10.3 (3)
C-18	0.0389 (8)	0.1958 (7)	-0.0427 (1)	6.2 (2)
C-19	0.4071 (7)	0.6703 (7)	-0.0406 (1)	5.8 (1)
C-20	0.4152 (11)	0.8289 (8)	0.0106 (1)	8.3 (2)
O-21	0.1150 (7)	0.6014 (6)	-0.0667 (1)	7.8(1)
O-22	0.1518 (6)	0.2830 (6)	-0.0606 (1)	7.2 (1)
O-23	0.4512 (5)	0.6348 (6)	-0.0619(1)	7.0(1)
O-24	0.4649 (5)	0.3792 (5)	-0.0385 (1)	6.9 (1)
O-25	0.0741 (4)	0.3696 (4)	$-0.0000(-)^{*}$	5.0 (1)
O-26	-0.1259 (5)	0.3913 (4)	0.0234 (1)	6.2 (1)
O-27	0.0050 (6)	-0.0139 (5)	0.0438 (1)	7.2 (1)
C-28	0.0495 (9)	0.5931 (10)	-0.0862 (1)	8.3 (2)
O-29	-0.0883 (9)	0.4890 (10)	-0.0919(1)	12.4 (2)
C-30	0.1760 (13)	0.7500 (12)	-0.0996 (2)	10.4 (3)
C-31	0.5960 (8)	0.7340 (8)	-0.0704 (1)	7.5 (2)
O-32	0.6948 (10)	0.8632 (11)	-0.0617 (2)	23.9 (3)
C-33	0.6246 (10)	0.6772 (10)	-0.0919 (2)	8.5 (2)
C-34	0.4372 (8)	0.2180 (8)	-0.0412 (2)	7.2 (2)
O-35	0.3507 (8)	0.1014 (6)	-0.0287 (1)	10.5 (2)
C-36	0.5125 (11)	0.1999 (11)	-0.0616 (2)	9.6 (3)
C-37	-0.2746 (9)	0.2295 (8)	0.0168 (2)	7.5 (2)

 TABLE 4.
 Non-hydrogen Atom Fractional Coordinates and Equivalent Isotropic Thermal Parameters for 12-0-Methylteucrolin A [10], with Estimated Standard Deviations in Parentheses.

^aThe z-coordinate of O-25 was held constant throughout the analysis to define the space group origin in this direction.

 δ_{C-13} 130.90 for **5**), in agreement with those previously reported for **15** (20,21), thus formulating the structure of this new diterpene as teucrolin B [**5**].

In addition, three minor diterpenoids **6–8** were isolated (for yield, mp, and specific rotation; see Table 1). One of these, teucrolin C [**6**], was obtained as colorless plates that analyzed for $C_{26}H_{34}O_9$. The ¹H- and ¹³C-nmr spectra of **6** (Tables 5 and 6) were found to be generally similar to those of 6 β ,12-diacetylteucrolin B [**17**] except for the difference associated with the presence of a ketone at C-12 (ν max 1665 cm⁻¹; δ_C 193.05, s). The ¹H-nmr (C₆D₆) spectrum of **6** showed signals at δ 4.57 (t, J=2.2 Hz) for H-3 β and at δ 2.32 and 2.18 (each d, J=16.7 Hz) due to the AB system of H₂-11. The ¹H-nmr spectrum also revealed the anticipated deshielding of H-14 and H-16 to δ 6.58 and 7.36, respectively (versus δ_{H-14} 6.08 and δ_{H-16} 7.06 for **5**), due to the presence of the ketone at C-12 (22). The ¹H-nmr chemical shift values (in CDCl₃) of H-11 and H-14–H-16 for

	Compound							
Proton	5	5	6	8	16	17		
	(CDCl ₃)	(C ₆ D ₆)	(C ₆ D ₆)			8		
H-1	+ "	+	+	2.08–2.15 m ^c 1.70–1.90 m	+	+		
H-2	2.08 m 1.80 m	+	1.96 m	2.10 m ^c 1.88–1.98 m	+	1.82 m		
H-3	4.56 t (3.4)	4.70 t (2.2)	4.57 t (2.2)	3.97 dd (5.6,9.2)	4.55 t (2.8)	4.52 t (2.4)		
H-6	3.66 ddd (1.4,4.3, 10.1)	3.55 dd (5.6,11.0)	4.98 brdd (4.9,10.9)	4.72 d —	3.60 ddd (1.5,4.5, 9.5)	4.75 ddd (1.3,5.4, 9.8)		
H-7	1.50-1.60 m	+	1.50–1.60 m	3.37 q (7.0)	+	1.45-1.55 m		
H-8	1.65 m	+	+	+	+	1.62 m		
H-11	1.85–1.95 m	+	2.32 d (16.7) 2.18 d (16.7)	2.34 dd (5.8,14.8) 1.45-1.55 m	+	+		
H-12	4.79 brd (8 0)	4.35 dd (1.6.7.3)	_	2.90 dd (4.13.6)	5.89 dd (3.4.7.2)	5.89 dd (3.3.7.9)		
H-14	6.37 d (1.0)	6.08 t (1.2)	6.58 dd (1.0.2.0)	6.26 d (1.0)	6.36 dd (1.0.2.0)	6.37 dd (1.0.2.0)		
H-15	7.39 d (1.2)	7.06 t (1.2)	6.84 t (1.6)	7.35 d (1.2)	7.38 m	7.42 d		
H-16	7.37 brd	7.04 d (1.4)	7.36 t	7.20 d (1.0)	7. 38 m	7.37 dd (1.4.2.2)		
H-17	0.83 d	0.53 d	0.49 d	1.08 d (7 4)	0.79 d (6.8)	0.86 d (6.4)		
H _A -18	2.55 d (3.6) ^d	1.99 d (3.8) ^d	1.77 d (3.80) ^d	4.37 d (8.8)	2.53 d (3.6) ^d	2.31 d (3.6) ^d		
H _B -18	3.42 brd (3.2) ^e	2.96 d (3.8)°	3.05 d (3.8)°	3.82 dd (2.0.9.4)	3.31 d (3.2)°	3.18 d (3.6)*		
H ₄ -19	4.58 d (13.4)	4.81 d (11.4)	4.63 dd (1.6,11.6)	4.16 d (12.4)	4.58 d (13.0)	4.48 brd (10.8)		
Н _в -19	4.67 d (14.6)	4.92 d (11.0)	4.99 d (11.2)	4.35 d (12.4)	4.70 brd (12.6)	4.92 d (11.8)		
H-20	0.75 s	0.46 s	0.49 s	0.74 s	0.75 s	0.78 s		
OAc	2.07, 2.04 (2×s)	1.84, 1.83 (2×s)	1.87, 1.83 1.83 (3×s)	2.04 s	2.07, 2.04 2.0 (3×s)	2.09, 2.05 2.0, 1.95 $(4 \times s)$		
OH			2.80-2.95 brs					

TABLE 5. ¹H-nmr Chemical Shift Values (δ ppm) and Coupling Constants (Hz, in parentheses) for Diterpenes 5, 6, 8, 16, and 17.⁴

Spectra recorded at 200 MHz.

°+=overlapped signals.

Signals superimposed on each other.

^dexo-Hydrogen with respect to ring B (19). ^eendo-Hydrogen with respect to ring B (19).

6 were also in agreement with those previously reported for the oxidation product **18** of 6,19-diacetylteumassilin (22), thus assigning the structure of this new compound as teucrolin C [**6**].

The second minor diterpenoid teucrolin D [7], $C_{22}H_{30}O_9$, gave ¹H- and ¹³C-nmr spectral data (Tables 2 and 3) that were almost indistinguishable from those of teucrolin A [4], except for the absence of the signals for the β -substituted furan and deshielded resonance of the spiro carbon. The presence of a C-12(10 β)- γ -lactone was inferred from the spectral data [δ_{C-12} 173.95 and δ_{C-10} 92.33, ν max 1780 cm⁻¹ (γ -lactone)]. Furthermore, the ¹H-nmr spectrum of 7 showed a signal at δ 4.63 (t, J=3.5 Hz; δ_{C} 75.39) due to an axial α -OAc group at C-3 like that observed for 4–6. Based on foregoing data and also by comparing the ¹³C-nmr chemical shift values for previously isolated tetranorneocleordane teucrolivin F [19] (6), this minor diterpene was formulated as teucrolin D [7]. The relative stereochemistry of teucrolin D depicted in 7 was based on

Cathon	Compound								
Carbon	3	5	6⁵	8	17				
C-1	27.06 ^c	17.17	17.82	27.18	17.22				
C-2	26.92 ^c	30.24	30.31	25.80	30.22				
C-3	63.35	76.46	76.86	68.72	76.49				
C-4	66.56	65.11	63.54	84.08	63.48				
C-5	54.72	44.76	45.46	58.24	45.11				
C-6	75.44	74.98	73.09	75.02	73.09				
C-7	209.0	34.01	33.48	210.87	32.79				
C-8	45.29	35.01	35.43	43.79	35.19				
C-9	49.83	39.39	40.94	48.28	39.22				
C-10	81.81	47.87	47.49	90.10	48.68				
C-11	38.98	45.02	45.88	38.68	42.34				
C-12	21.79	63.12	193.05	21.08	64.65				
C-13	125.14	130.90	129.58	125.32	126.09				
C-14	110.60	108.20	108.47	110.63	108.47				
C-15	143.13	143.75	146.91	142.67	143.56				
C-16	138.53	138.21	144.46	123.83	139.88				
C-17	8.10	15.56	15.39	7.71	15.39				
C-18	46.42	47.46	47.13	68.63	46.91				
C-19	63.73	63.65	62.68	61.75	62.43				
C-20	18.22	18.17	17.53	18.60	17.53				
-OAc	170.16	170.93	170.22	169.73	170.85				
		170.04	169.08	_	169.85				
	_		168.96		169.81				
					(2×C)				
	21.0	21.24	21.03	20.77	21.45				
		21.20	21.03		21.27				
			20.95		21.19				
]	21.15				

TABLE 6. ¹³C-nmr Spectral Data for Diterpenoids 3, 5, 6, 8, and 17.⁴

 * All spectra recorded at 50 MHz in CDCl₃. Multiplicities of the carbon signals of all compounds were determined by APT and DEPT experiments.

^bSpectrum recorded in C_6D_6 .

^cInterchangeable signal.

the ¹H- and ¹³C-nmr spectral data as well as biogenetic correlation with teucrolin A [4] and related compounds 1 and 19 (5,6).

¹H- and ¹³C-nmr spectral data (Tables 5 and 6) for the remaining minor diterpene, teucrolin E [**8**], were remarkably similar to those of teucrolivin C [**3**] except for the absence of signals associated with the C-4(18)-epoxide group. Instead, **8** was concluded to have a hydroxymethyl group at C-4 (δ 3.82 and 4.37; δ_{c} 68.63, t) and a C-4(10 β) inner oxide group, as suggested by its ¹³C-nmr spectral data (δ_{c-4} 84.08 and δ_{c-10} 90.1).

In the course of isolation of the above-mentioned compounds, the 12-0-methyl ethers of 1 and 4, namely, 12-0-methylteucrolivin A [9] and 12-0-methylteuerolin A [10], as well as the 12-0-ethyl ether of 4, 12-0-ethylteucrolin A [11], were also isolated as pure entities. They are apparently artifacts arising from the reaction between the extraction solvents MeOH and EtOH (contained in CHCl₃ as a stabilizer) and the respective precursor for each. Confirmation of this fact was obtained by treating 1 and 4 with 95% MeOH to give 9 and 10, respectively, while 11 was obtained by reacting 4 with 95% EtOH. All products were obtained in excellent yields (see Experimental).

Other natural products isolated from *T. oliverianum* in the course of this work include 24 (S)-stigmasta-5,22,25-trien-3 β -ol, 8-0-acetylharpagide, and two flavones eupatorin

and cirsiliol. These compounds were characterized by comparing their physical and spectral data with those reported.

It is noteworthy from a phytochemical point of view that although more than 120 diterpenoids possessing the neoclerodane skeleton have been isolated from *Teucrium* species, teucrolins A [4], B [5], C [6], and D [7] are the first to date with a unique 3α -acetyl substituent to be found as natural products. Moreover, 24(S)-stigmasta-5,22,25-trien-3 β -ol and eupatorin have not been previously reported from *Teucrium* species.

EXPERIMENTAL

GENERAL EXPERIMENTAL PROCEDURES.—Mp's uncorrected; uv cyclohexane (unless otherwise stated), ir KBr. The nmr spectra were taken on Varian instruments at 300 (or 200) MHz (¹H) and 75 (or 50) MHz (¹³C) in CDCl₃ (unless otherwise stated) using TMS as internal standard. Multiplicity determinations (APT and DEPT/or DEPTGL) and 2D nmr spectra (COSY and HETCOR) were obtained using standard Varian software. Eims was obtained on a Finnigan 3300 at 70 eV, and cims was recorded using NH₃ as the ionizing gas. Specific rotations were obtained at ambient temperature in C₆H₆, unless otherwise stated, with a Perkin-Elmer 241 MC polarimeter. Tlc was performed on Si gel 60 F254, using petroleum either (bp 60–80°)-EtOAc (1:9) as solvent, with visualization using vanillin/H₂SO₄ spray reagent. Centrifugal preparative tlc (CPtlc, using chromatotron®, Harrison Research Inc. model 7924) was run with either 1-mm or 2-mm Si gel P₂₅₄ disks, using a flow rate of 4 ml/min.

PLANT MATERIAL.—The aerial parts of *T. oliverianum* were collected in Rudhet Khraim, Gassim, Saudi Arabia in April 1990. A voucher specimen was deposited at the harbarium of MAPPRC, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.

EXTRACTION AND ISOLATION.—The dried ground aerial parts (leaves and stems, 3 kg) were percolated at room temperature with 95% MeOH (3×5 liters), and the extract was evaporated in vacuo to leave 105 g of residue. The crude extract (100 g), dissolved in 95% MeOH, was subjected to solvent partitioning with *n*- hexane (3×5 liters), followed by CHCl₃ (3×5 liters), presaturated with each other, to yield 22 g, 12 g, and 63 g in these phases, respectively. The CHCl₃ fraction (62 g) was subjected to flash chromatography over Si gel (3.1 kg) and eluted with petroleum ether (bp 60–80°) followed by increasing concentrations of EtOAc in petroleum ether to give seven pure diterpenoids, four other known compounds, and two mixtures (Table 1). Each mixture was subsequently separated by centrifugal preparative tlc (using Si gel P₂₅₄ 2 mm disks as shown in Table 1).

Further, the same material (*T. oliverianum*; 50 g) was extracted by percolation with absolute EtOH and the extract was dried in vacuo (yield 15.5 g). A portion of this extract (10 g) was subjected to solvent partitioning between *n*-hexane and MeCN (yields 2.5 g and 4.5 g, respectively); the latter fraction showed the absence of the artifacts 9-11, those isolated from the CHCl₃ partition of 95% MeOH extract.

Teucrolin A [4].—Colorless plates from *n*- hexane/EtOAc: mp and $[\alpha]D$ see Table 1; uv λ max nm 205 (log ϵ 4.16) 250 sh (log ϵ 2.6); ir (KBr) ν max cm⁻¹ 3420 (OH), 1730 (br, OH), 1500, 1365, 1240 br, 1150, 1070, 1030, 965, 870, 800, 600; ¹H nmr see Table 2; ¹³C nmr see Table 3; cims *m*/*z* (rel. int.) [M·NH₄]⁺ 524 ([C₂₆H₃₄O₁₀·NH₄]⁺) (12), [M]⁺ 506 ([M·NH₄-NH₄]⁺) (90), [M-OH]⁻ 489 (100), [M-59]⁺ 447 (12), [489-60]⁻ 429 (48), [429-60]⁻ 369 (45), [369-60]⁻ 309 (20), 174 (8), 161 (10), 95 (7).

Teucrolin B **[5**].—Colorless needles from *n*-hexane/EtOAc: mp and $\{\alpha\}$ D see Table 1; uv λ max nm 200 (log ϵ 4.08) 265 (log ϵ 2.45); ir (KBr) ν max cm⁻¹ 3390 (OH), 1745 (OAc), 1730 (br, OAc), 1365, 1250 (br), 1145, 1100, 1085, 1030, 1015, 870, 770, 600; ¹H nmr see Table 5; ¹³C nmr see Table 6; cims *m/z* (rel. int.)[MH]⁺451 ([C₂₄H₃₄O₈·H]⁺)(12), [MH-60]⁺391 (35), [MH-(60+42)]⁺349 (87), [MH-(2×60)]⁻ 331 (7), [331-H₂O]⁺ 313 (50), [313-H₂O]⁺ 295 (88), 261 (88), 219 (90), 201 (100), 189 (8), 163 (7), 95 (3).

Teucrolin C [**6**].—Colorless plates from *n*-hexane/EtOAc: mp and [α]D see Table 1; uv (EtOH) λ max nm 215 (log ϵ 4.26), 250 (log ϵ 3.86); ir (KBr) ν max cm⁻¹ 1730 (br, OAc), 1665 (CO), 1550, 1500, 1460, 1365, 1240 (br), 1150, 1080, 1030, 870, 805, 795, 635, 600; ¹H nmr see Table 5; ¹³C nmr see Table 6; ms *m*/*z* (rel. int.) [M]⁺ 490 (C₂₆H₃₄O₉) (6), [M-C₆H₅O₂]⁺ 381 (30), [381-60]⁺ 321 (20), [381-2×60]⁺ 261 (45), [381-3×60]⁺ 201 (67), 187 (85), 159 (65), 110 (55), 95 (100), 69 (17).

Teucrolin D [7].—Powder: mp and [α]D see Table 1; uv λ max nm 200 (log \in 3.88), 225 (sh, log \in 3.62), 275 (log \in 2.85); ir (KBr) ν max cm⁻¹ 1780 (lactone), 1730 (OAc), 1460, 1365,1230, 1170, 1040, 1020, 970, 920, 810, 680, 600; ¹H nmr see Table 2; ¹³C nmr see Table 3; ms *m/z* (rel. int.) [M]⁻ 438 (C₂₂H₃₀O₉) (2), 366 (100), [366-60]⁺ 306 (25), [366-2×60]⁺ 245 (45), [246-59]⁺ 187 (50).

Teucrolin E [8].—Colorless plates: mp and { α }D see Table 1; uv λ max nm 205 (log ϵ 4.22), 275 (br, log ϵ 2.75); ir (KBr) ν max cm⁻¹ 3460 (br, OH), 1740 (br, OAc), 1720 (CO), 1500, 1450, 1390, 1360, 1230 (br), 1150, 1070, 1035, 1015, 905, 870, 770, 600; ¹H nmr see Table 5; ¹³C nmr see Tables 6; cims *m/z* (rel. int.) [M·NH₄]⁺ 440 ([C₂₂H₃₀O₈·NH₄]⁺) (100), [MH]⁺ 423 ([M·NH₄-NH₃]⁺) (2), [423-H₂O]⁺ 405 (8), [423-44]⁺ 379 (30), [423-59]⁺ 362 (12), [379-H,O]⁺ 311 (12), 314 (14), 88 (25), 59 (85).

12-O-Methylteucrolin A [10].—Colorless plates from *n*-hexane/EtOAc: mp and [α]D see Table 1; ir (KBr) ν max cm⁻¹ 1735 (OAc), 1720 (OAc), 1550, 1420, 1285 (br), 1200, 1150, 1080, 1020, 920, 845, 650; ¹H nmr see Table 2; ¹³C nmr see Table 3; cims *m*/z (rel. int.) [M·NH₄]⁺ 538 ([C₂₇H₃₆O₁₀·NH₄]⁺) (10), [MH]⁺ 521 ([M·NH₄-NH₃]⁺) (12), [521-Me]⁺ 506 (7), [521-OMe]⁺ 489 (90), [489-60]⁺ 429 (15), [489-2×60]⁺ 369 (5), 83 (65), 59 (100).

12-O-Methylteucrolivin A [9].—Colorless plates from *n*-hexane/EtOAc: mp and [α]D see Table 1; ir (KBr) ν max cm⁻¹ 1740 (OAc), 1730 (OAc), 1715 (-C=O), 1500, 1460, 1390, 1370, 1240 (br), 1150, 1140, 1090, 1030, 960, 860, 795, 600; ¹H nmr see Table 2; ¹³C nmr see Table 3; fabms *m*/z (rel. int.) [M+H]⁺ 477 ([C₂₅H₃₂O₉+H]⁺)(25), [M+H-OMe]⁺ 446 (47), 429 (22), [446-60]⁺ 386 (10), 343 (10), [386-60]⁺ 326 (22), 309 (20), 275 (15), 247 (15), 215 (100), 201 (57).

12-O-Ethylteucrolin A [11].—Powder: $[\alpha]D$ see Table 1; ir (KBr) $\nu \max \operatorname{cm}^{-1} 1730$ (br, OAc), 1500, 1460, 1365, 1240 (br), 1160, 1030 (br), 955, 870, 800, 600, ¹H nmr see Table 2; ¹³C nmr see Table 3; cims m/z (rel. int.) $[M+H]^+$ 535 ($[C_{28}H_{38}O_{10}+H]^+$) (12), $[535-EtOH]^+$ 489 (75), $[535-60]^+$ 475 (20), $[489-60]^+$ 429 (70), $[429-60]^+$ 369 (78), $[369-60]^+$ 309 (100), 291 (15), 281 (18), 259 (16), 217 (16), 199 (75), 171 (20), 161 (15), 137 (12), 95 (20).

REDUCTION OF COMPOUND **9** WITH NaBH₄.—Compound **9** (150 mg) in absolute EtOH (10 ml) was stirred with NaBH₄ (75 mg) at room temperature for 1 h. The reaction mixture was acidified with glacial HOAc (0.1 ml), then diluted with H₂O (30 ml) and extracted into Et₂O from which the major product **12** was separated from several minor side products by chromatography [CPtlc, 1 mm Si gel P₂₅₄ disk; solvent EtOAc-CH₂Cl₂ (6:4)] as colorless transparent glass (80 mg): $[\alpha]D + 7.9^{\circ}$ (c=0.102, C₆H₆), ir (KBr) ν max cm⁻¹ 3440 (OH), 1730 (br, OAc), 1500, 1385, 1360, 1230 (br), 1150, 1065, 1040, 1015, 870, 775, 600; ¹H nmr see Table 2; ¹³C nmr see Table 3; ms *m/z* (rel. int.) [M]⁺ 478 (1), [M-OMe]⁺ 447 (75).

ACETYLATION OF COMPOUND 12.—Compound 12 (40 mg) was dissolved in pyridine and treated with Ac_2O at room temperature for 4 h. Regular workup gave a mixture (38 mg) of compounds 13 and 14, which was separated on a short Si gel column, using *n*-hexane–EtOAc (75:25) as solvent, to give 13 (7 mg) and 14 (16 mg) as colorless solids.

3-epi-12-O-Methylteucrolin A [13].—Solid: $[\alpha]D + 6.5^{\circ} (c=0.052, C_{e}H_{e})$; ir (KBr) $\nu \max \operatorname{cm}^{-1} 1740$ and 1720 sh (OAc), 1500, 1460, 1370, 1350, 1260, 1240, 1160, 1140, 1120, 1080, 1030, 930, 910, 875, 795, 725, 600; ¹H nmr see Table 2; ms m/z (rel. int.) [M]⁺ 520 (3), [M-OMe]⁺ 489 (85).

3-epi-*Teucrolin A* [14].—Solid: { α }D +11.7° (c=0.102, C $_{e}H_{e}$); ir (KBr) ν max cm⁻¹ 1735 (br, OAc), 1500, 1460, 1380, 1360, 1245 (br), 1155, 1130, 1100, 1070 (br), 1040, 990, 965, 910, 870, 795, 600. ¹H nmr see Table 2; ¹³C nmr see Table 3; ms m/z (rel. int.) [M]⁺ 506 (5), [M-H₂O]⁺ 488 (35).

METHYLATION OF COMPOUNDS 1 AND 4.—Compounds 1 and 4 (each 20 mg) were treated separately with 95% MeOH at room temperature for 5 h. The reaction mixtures were dried in vacuo to afford the colorless crystals 9 and 10 (each ca. 18 mg), respectively. The physical (R_{f} , mp, mmp, and [α]D) and ¹Hnmr data of 9 and 10 were indistinguishable from those of 12-0-methylteucrolivin A and 12-0methylteucrolin A, respectively.

ACETYLATION OF TEUCROLIN B [5].—Compound 5 (40 mg) was acetylated for 24 h, as described above for 12, to afford a mixture of compounds 16 and 17. Separation of this mixture (35 mg) by CPtlc [using 1 mm Si gel P_{254} disk, solvent *n*-hexane–EtOAc (88:12)] gave triacetate 16, as a gum, and tetraacetate 17, as colorless needles (6 and 16 mg, respectively).

12-Acetylteucrolin B [16].—Gum: $[\alpha]D - 29.5^{\circ}$ (c=0.05, C₆H₆); ir (KBr) ν max cm⁻¹ 3500 (br, OH), 3130, 1735 (br, OAc), 1500, 1440, 1360, 1245 (br), 1160, 1130, 1070, 1010, 950, 855, 810, 750, 665, 600; ¹H nmr see Table 5; ms *m/z* (rel. int.) [M]⁺ 492 (5).

 6α , 12-Diacetylteucrolin B [17].—Needles: mp 163–164°; [α]D –35.8° (c=0.086, C₆H₆); ir (KBr) ν max cm⁻¹ 3130, 1730 (br, OAc), 1500, 1435, 1370, 1365, 1240 (br), 1150, 1125, 1075, 1060, 1020 (br), 940, 865, 815, 755, 670, 600; ¹H nmr see Table 5; ¹³C nmr see Table 6; ms m/z (rel. int.) [M]⁺ 534 (7).

ETHYLATION OF COMPOUND 4.—Treatment of compound 4 (20 mg) with absolute EtOH-H₂O (95:5) at room temperature for 6 h afforded **11** as a colorless solid (17 mg). The physical (R_f and [α]D) and spectroscopic data (¹H and ¹³C nmr) of **11** were indistinguishable from those of 12-0-ethylteucrolin A.

24(S)-Stigmasta-5,22,25-trien-3β-ol.—Needles from hot *n*-hexane: mp, $[\alpha]D$, ir, and ¹H nmr were indistinguishable from those reported previously (14); ¹³C nmr (no. of bonded H) 12.02 (3, C-18), 12.12 (3, C-27), 19.37 (3, C-19), 20.20 (3, C-21), 20.78 (3, C-29), 21.04 (2, C-11), 24.29 (2, C-15), 25.67 (2, C-28), 31.61 (2, C-2), 31.86 (2, C-7), 31.86 (1, C-24), 36.47 (0, C-10), 37.23 (2, C-1), 39.64 (2, C-16), 40.17 (1, C-20), 42.22 (2, C-4), 42.26 (0, C-13), 50.11 (1, C-9), 51.96 (1, C-8), 55.84 (1, C-17), 56.81 (1, C-14), 71.74 (1, C-3), 109.49 (2, C-26), 121.64 (1, C-6), 129.99 (1, C-22), 137.16 (1, C-23), 140.72 (0, C-23), 148.56 (0, C-25), hrms *m/z* (rel. int.) [M]⁺ 410.3503 (20).

8-O-Acetylbarpagide.—Plates from MeOH/EtOAc: mp, $[\alpha]D$, and ¹H-nmr data were indistinguishable from those reported previously (11); ¹³C nmr (CD₃OD, no. of bonded H) 24.11 (3, C-10), 47.63 (2, C-7), 57.08 (1, C-9), 64.45 (2, C-6'), 73.28 (1, C-4'), 74.91 (0, C-5), 76.12 (1, C-2'), 79.24 (1×2c, C-6 and C-5'), 79.74 (1, C-3'), 90.20 (0, C-8), 96.13 (1, C-1), 101.48 (1, C-1'), 108.50 (1, C-4), 145.44 (1, C-3), 174.91, 23.82 (OAc); the mp 184–185° and $[\alpha]D - 123°$ (*c*=0.2, CHCl₃) of the heptaacetate were indistinguishable from those previously reported [lit. (11) mp 185–189° and $[\alpha]^{22}D - 118°$ (*c*=0.99, CHCl₃)].

X-RAY CRYSTAL STRUCTURE ANALYSIS OF 12-0-METHYLTEUCROLIN A [10].—Crystal data: $C_{27}H_{36}O_{10}$, MW=520.58, hexagonal, a=b=8.902(1), c=60.940(5) Å (from 25 orientation reflections, $35^{\circ} < \theta < 40^{\circ}$), V=4182(1)Å³, Z=6, $D_c=1.240$ g cm⁻³, μ (CuK α radiation, $\lambda=1.5418$ Å)=7.5 cm⁻¹; crystal dimensions 0.23×0.23×0.50 mm.

Preliminary unit-cell parameters and space group information were derived from oscillation and Weissenberg photographs. Intensity data were recorded on an Enraf-Nonius CAD-4 diffractometer [CuK α radiation, graphite monochromator, ω -2 θ scans, scan width (0.90+0.14 tan θ)°, θ max=75°; 2881 non-equivalent reflections]. The intensities of four reference reflections, monitored every 2 h during data collection, showed no significant variation (<1% overall). The data were corrected for the usual Lorentz and polarization effects, and those 1675 reflections with I>3.0 σ (I) were retained for the structure analysis and refinement.

The crystal structure was solved by direct methods (MULTAN11/82). Approximate carbon and oxygen atom coordinates were obtained from an E-map. Positional and thermal parameters (at first isotropic and then anisotropic) of these atoms were adjusted by means of several rounds of full-matrix least squares calculations; hydrogen atoms were incorporated at their calculated positions during the later iterations. The parameter refinement converged (max. shift; ESD=0.04) at $R=\Sigma||F_0|-|F_c||/\Sigma|F_0|=0.056$ $\{R_w=[\Sigma w(|F_0|-|F_c|^2/\Sigma w|F_0|^2)]^{1/2}=0.083, GOF=[\Sigma w(|F_0|-|F_c|^2/N_{observations}-N_{parameter})]^{1/2}=1.66\}$. A final difference Fourier synthesis contained no unusual features ($\Delta \rho e/Å^3$: max. 0.25; min. -0.16).

Crystallographic calculations were performed on PDP11/44 and Micro VAX computers by use of the Enraf-Nonius Structure Determination Package (SDP). For all structure-factor calculations, neutral atom scattering factors and their anomalous dispersion corrections were from the literature (23). In the least-squares iterations, $\Sigma w \Delta^2 [w=1/\sigma^2(|F_0|), \Delta = (|F_0|-|F_c|)]$ was minimized.

ACKNOWLEDGMENTS

The authors thank Dr. C.D. Hufford, Department of Pharmacognosy, University of Mississippi, for the 300 MHz nmr spectra, Dr. Sultanul Abedin for identification of plant material, Mr. Khaled N.K. Lodhi for taking the 200 MHz nmr spectra, and Mr. Mohammed A. Mukhayar for technical assistance.

LITERATURE CITED

- 1. E. Blatter, "Records of the Botanical Survey of India." B.S.M.P. Singh, Dehradun, 1978, Vol. 8, part 1, p. 383.
- A.M. Migahid, "Flora of Saudi Arabia," 3rd ed., King Saud University Library, Riyadh, 1989, Vol. 2, p. 126.
- 3. S. Collenette, "An Illustrated Guide to the Flowers of Saudi Arabia," Scorpion Publishing Ltd., London, 1985, p. 282.
- 4. M.A. Ajabnoor, M.A. Al-Yahya, M. Tariq, and A.A. Jayyab, Fitoterapia, 227 (1984).
- 5. M. Bruno, A.A. Omar, A. Perales, F. Piozzi, B. Rodriguez, G. Savona, and M.C. De La Torre, *Phytochemistry*, **30**, 275 (1991).
- 6. M.C. De La Torre, M. Bruno, F. Piozzi, G. Savona, B. Rodriquez, and A.A. Omar, *Phytochemistry*, **30**, 1603 (1991).
- 7. F. Piozzi, Heterocycles, 15, 1189 (1981).
- 8. F. Piozzi, B. Rodriguez, and G. Savona, Heterocycles, 25, 808 (1987).
- 9. J.B. Harborne, F.A. Tomas-Barberan, C.A. Williams, and M.I. Gil, Phytochemistry, 25, 2811 (1986).
- M. Zhi-Da, X. Ning, Z. Pei, Z. Shou-Xun, W. Chong-Shu and Z. Qi-Tai, *Phytochemistry*, **30**, 4175 (1991).

- 11. L.J. El-Naggar and J.L. Beal, J. Nat. Prod., 43, 649 (1980).
- 12. D. Rogers, G.G. Unal, D.J. Williams, S.V. Ley, G.A. Sin, B.S. Joshi, and K.R. Ravindranath, J. Chem. Soc., Chem. Commun., 97, (1979).
- M.S.J. Simmonds, W.M. Blaney, S.V. Ley, G. Savona, M. Bruno, and B. Rodriguez, *Phytochemistry*, 28, 1069 (1989).
- 14. L.M. Bolger, H.H. Rees, E.L. Ghisalberti, L.J. Goad, and T.W. Goodwin, *Tetrahedron Lett.*, **35**, 3043 (1970).
- 15. J. Ruhdorfer and H. Rimpler, Z. Naturforsch., 36, 697 (1981).
- S.M. Kupchan, C.W. Sigel, R.J. Hemingway, J.R. Knox, and M.S. Udayamurthy, *Tetrahedron*, 25, 1603 (1969).
- 17. M. Iinuma, S. Matsuura, and K. Kusuda, Chem. Pharm. Bull., 28, 708 (1980).
- 18. W.C. Still, M. Khan, and A. Mitra, J. Org. Chem., 43, 2923 (1978).
- 19. F.H. Allen, O. Kennard, D.G. Watson, L. Brammer, A.G. Orpen, and R. Taylor, J. Chem. Soc., Perkin Trans. 2, S1 (1987).
- M. Bruno, G. Dominguez, A. Lourenco, F. Piozzi, B. Rodriguez, G. Savona, M.C. De La Torre, and N.A. Arnold, *Phytochemistry*, **30**, 3693 (1991).
- P. Fernandez, B. Rodriguez, J.-A. Villegas, A. Perales, G. Savona, F. Piozzi, and M. Bruno, Phytochemistry, 25, 1405 (1986).
- 22. G. Savona, M. Bruno, F. Piozzi, O. Servettaz, and B. Rodriguez, Phytochemistry, 23, 849 (1984).
- 23. J.A. Ibers and W.C. Hamilton, Eds., "International Tables for X-ray Crystallography," The Kynoch Press, Birmingham, England, 1974, Vol. IV.

Received 2 September 1992